Фильтры низких и высоких частот

Предназначение

Сабвуфер — динамик для вывода низкочастотных колебаний в диапазоне 5-200 Гц. В продаже встречаются пассивный и активный варианты исполнения. При этом частоты делятся на 3 основные категории:

  • Верхние.
  • Средние.
  • Глубокие.

Фильтры предназначены для разделения звука и повышения качества. Он устанавливается для саба пассивного и активного типа, может использоваться как сумматор, который делает систему более эффективной.

Предназначение системы заключается в распределении частот между несколькими элементам вывода. Сабвуфер способен выводить только низкий диапазон, для которого он отделяется от всего потока.

Предназначение

Сделать фильтр для сабвуфера

Фильтр или кроссовер(см.Самодельные кроссоверы для акустики и их предназначение), как его еще называют, сегодня выполняет важнейшую функцию. Дело в том, что практически все современные динамики, включая и сабвуфер, воспроизводят эффективно только определенную долю частот. К примеру, тот же басовик воспроизводить хорошо в состоянии только низкие басы.

Фильтр для автомобильного сабвуфера

За границами «родной» полосы (эффективно воспроизводимой), звуковое давления, идущее из динамика, заметно снижается и возрастает одновременно с этим уровень искажений. В таком случае говорить о каком-то качестве звука просто глупо и следовательно, чтобы решить проблему, приходится использовать в аудиосистеме несколько динамиков(см.Как выбрать динамики для автомагнитолы своими силами). Такова реалия: это происходит и в домашней акустике, и в автомобильной. Это не новость.

Типичные схемы расположения динамиков в авто и роль фильтров

Динамики в авто

Касательно автомобильной акустики хотелось бы выделить две типичные схемы построения системы звука, с которыми знакомы, наверное, все, кто много мало знаком с автозвуком.Речь идет о следующих схемах:

Наиболее популярная схема подразумевает три динамика. Это басовик (нацеленный исключительно на низы), динамик средних и низких частот (мидбасс) и отвечающий за воспроизведение ВЧ, твитер.

Фильтр низких частот сделать самому для сабвуфера

Именно для того, чтобы не нарушать это требование, предназначены электрические фильтры, в роль которых входит выделение конкретных «родных» частот и подавление «чужих».

Типы фильтров

Фильтры(см.Как сделать самому фильтр для автомагнитолы) частот различаются по типам.Принято выделять следующие варианты:

Обычные фильтры, принцип действия которых сводится к тому, чтобы у их катушек индуктивности сопротивление возрастало с ростом частоты сигнала и спадало у конденсаторов, которыми они наделены. Несложно догадаться, что в таких фильтрах эффективно пропускают НЧ катушки индуктивности, а ВЧ – конденсаторы.

Полосовой фильтр

  • Режекторный фильтр – полная противоположность полосовому. Здесь та полоса, которая ПФ пропускается без изменений, подавляется, а полосы вне этого интервала усиливаются;
  • ФИНЧ или фильтр подавления инфранизких частот стоит особняком. Принцип его действия основывается на подавлении высоких частот с низким показателем среза (10-30Гц). Предназначение этого фильтра – непосредственная защита басовика.

Нч фильтр для сабвуфера самому

Параметры

Кроме типов фильтров, принято разделять и их параметры.К примеру такой параметр, как порядок, свидетельствует о количестве катушек и конденсаторов (реактивных элементов):

  • 1-ый порядок содержит только один элемент;
  • 2-ой порядок два элемента и т.д.

Другой, не менее важный показатель – крутизна спада АЧХ, показывающая, насколько резко фильтр подавляет «чужие» сигналы.

Для сабвуфера

В принципе, любой фильтр, в том числе и этот, представляет собой сочетание нескольких элементов. Обладают компоненты эти свойством избирательно пропускать сигналы определенных частот. Принято разделять три популярные схемы этого разделителя для басовика.Они представлены ниже:

Первая схема подразумевает самый простой разделитель (изготовить который своими руками, не составит никакой сложности). Он выполнен в виде сумматора и стоит на одном транзисторе. Конечно, серьезного качества звука с таким простейшим фильтром не добиться, но из-за своей простоты, он прекрасно подходит любителям и начинающим радиоманам;

Простая схема

Две другие схемы намного сложны, чем первая. Построенные по эти схемам элементы, размещаются между местом выхода сигнала и входом усилителя басовика.

Каким бы ни был разделитель, простейшим или сложным, он должен иметь следующие технические характеристики.

Питание/напряжение 12-35 В
Частота среза 100 Гц
Потребление тока 5 мА
Усиление «родной» частотной полосы 6 дБ
Подавление «чужой» полосы 12 дБ

Фазировка динамиков

На этом сведение подходит в концу. Остается только определиться с фазировкой динамиков. Тут есть как минимум три способа: на слух, по форме АЧХ и по фазовому сдвигу на частоте раздела. Если у динамиков АЧХ и ФЧХ в меру линейная, и фильтр фазу на разделе сильно не накручивает, то при смене правильной фазы на неправильную на частоте раздела появится глубокий провал, пропустить его сложно. В таком случае стоит подгонять фазу по по ее сдвигу. Сделать это можно осциллографом подавая на горизонтальную развертку сигнал с усилителя, а на вертикальное отклонение с микрофона.

Подают на вход усилителя синус с частотой раздела и не меняя взаимного расположения микрофона и колонки переключают ВЧ и НЧ динамики. По одинаковости фигур Лиссажу делается вывод о равенстве фаз излучателей. Этот метод хорошо подходит для фильтров первого порядка. С кривизной наших динамиков этот метод себя не оправдывает, поэтому сравниваем АЧХ при разной фазировке.

Второй вариант заметно хуже. Однако и первый не предел мечтаний, но так как двигать индуктивности катушек не просто, а ковыряться дальше уже лень, то все было оставлено как есть.

Активные типы фильтров

Активный фильтр низких частот в первую очередь выделяется высокой полосой пропускания на уровне 5 Гц. Дополнительно в системе устанавливаются элементы для перехвата сигнала. Конденсаторы в данном случае припаиваются на специальной магнитной сетке. Для регулировки предельной частоты применяются транзисторы. Расширение возможностей устройства может осуществляться путем добавления в цепь конденсаторов. Емкость их должна составлять минимум 40 пФ.

Для положительной обратной связи применяется аналоговый модулятор. Устанавливается он в цепи только за конденсаторами. Колебательные контуры в системе можно стабилизировать при помощи стабилитронов. Пропускная способность их обязана составлять минимум 5 Гц. В данном случае параметр отрицательного сопротивления напрямую зависит от перекрытия диапазона частот.

Фильтр – сумматор для сабвуфера, схема – Поделки для авто

При сборке усилителей для автомобилей на микросхемах TDA 7293 или TDA 7294 иногда возникает необходимость в компактом блоке фильтра, желательно чтобы был простым и понятным, а также имел нормальные характеристики и являлся одновременно сумматором. Именно в этой статье и предоставляю такую поделку и схему.

Схема собрана всего на одном биполярном, маломощном транзисторе. Можно конечно использовать для сабвуфера и пассивный фильтр, например всего из одного фильтра LC, он мог бы отфильтровать звук до частоты 20-150 Гц, но это не целесообразно, так как на выходе получим то же самое, что и на входе. Вот именно поэтому нам и нужно первоначальный звук хорошо отфильтровывать.

Почему применяют фильтры НЧ, да потому что при фильтрации, так сказать с каждой ступенькой номинал звука уменьшается на входе в сотни раз, и когда подаём этот номинал на сабвуфер, его не достаточно или просто не хватает для нормальной раскачки.

В приведённой в этой статье схеме, происходит практически тоже, но за исключением того, что стоит один транзистор, на котором собран предварительный усилитель, и который уже “отфильтровал” звуковой сигнал и усилил его для подачи на конечный усилитель.

печатка для тех, кто собирается травить плату.

На входе фильтра собран сумматор, который суммирует оба канала, и в последствии сигнал поступает в пассивный фильтр с частотой среза 150 Гц. Фильтр второго канала имеет усилитель на выходе. Есть и особенность данной схемы, в том что можно регулировать срез от 15 до 30 Гц.

Схема не требует к себе каких-либо наладок или подстроек. Единственная подстройка это частота среза, которую можно настроить под себя, под свой вкус, так как в схеме есть сдвоенный регулятор 100 кОм ( можно взять номинал от 47 до 2200 кОм).

Схема прекрасно работает с любыми усилителями мощности звук.частоты, как с маломощными 12-Воль-ми, так и с мощными двуполярными.

Отечественные или импортные транзисторы, прекрасно себя чувствуют в этой схеме, так что тут выбор за вами.

И ещё хочу отметить один момент, если у вас сложилась ситуация, которая требует обратиться в автосалон, то сперва узнайте о нём прочитав отзывы. Лучше ехать, когда знаешь куда едешь…

Подключение сабвуферного фильтра

Стоит отметить, что модуль фильтра для сабвуфера должен быть присоединен к выходу предварительного усилителя после регулятора громкости, что позволит улучшить регулировку громкости всей системы. Потенциометром усиления можно отрегулировать соотношение громкости сабвуфера к громкости всего сигнального тракта. К выходу модуля необходимо подключить любой усилитель мощности, работающий в классической конфигурации, например такой. При необходимости используйте только один из выходных сигналов, сдвинутых по фазе на 180 градусов относительно друг друга. Оба выходные сигнала можно использовать, если нужно построить усилитель в мостовой конфигурации.

Полосовые фильтры

В прошлой статье мы с вами рассматривали один из примеров полосового фильтра

Вот так выглядит АЧХ этого фильтра.

Особенность таких фильтров такова, что они имеют две частоты среза. Определяются они также на уровне в -3дБ или на уровне в 0,707 от максимального значения коэффициента передачи, а еще точнее Ku max/√2.

Полосовые резонансные фильтры

Если нам надо выделить какую-то узкую полосу частот, для этого применяются LC-резонанcные фильтры. Еще их часто называют избирательными. Давайте рассмотрим одного из их представителя.

LC-контур в сочетании с резистором R образует делитель напряжения. Катушка и конденсатор в паре создают параллельный колебательный контур, который на частоте резонанса будет иметь очень высокий импеданс, в народе – обрыв цепи. В результате, на выходе цепи при резонансе будет значение входного напряжения, при условии если мы к выходу такого фильтра не цепляем никакой нагрузки.

АЧХ данного фильтра будет выглядеть примерно вот так:

В реальной же цепи пик характеристики АЧХ будет сглажен за счет потерь в катушке и конденсаторе, так как катушка и конденсатор обладают паразитными параметрами.

Если взять по оси Y значение коэффициента передачи, то график АЧХ будет выглядеть следующим образом:

Постройте прямую на уровне в 0,707 и оцените полосу пропускания такого фильтра. Как вы можете заметить, она будет очень узкой. Коэффициент добротности Q позволяет оценить характеристику контура. Чем большее добротность, тем острее характеристика.

Как же определить добротность из графика? Для этого надо найти резонансную частоту по формуле:

где

f0— это резонансная частота контура, Гц

L — индуктивность катушки, Гн

С — емкость конденсатора, Ф

Подставляем L=1mH и С=1uF и получаем для нашего контура резонансную частоту в 5033 Гц.

Теперь надо определить полосу пропускания нашего фильтра. Делается это как обычно на уровне в -3 дБ, если вертикальная шкала в децибелах, либо на уровне в 0,707, если шкала линейная.

Давайте увеличим верхушку нашей АЧХ и найдем две частоты среза.

f1 = 4839 Гц

f2 = 5233 Гц

Следовательно, полоса пропускания Δf=f2 – f1 = 5233-4839=394 Гц

Ну и осталось найти добротность:

Q=5033/394=12,77

Режекторные фильтры

Другой разновидностью LC схем является последовательная LC-схема.

Ее АЧХ будет выглядеть примерно вот так:

Как можно увидеть, такая схема на резонансной частоте и вблизи нее как бы вырезает небольшой диапазон частот. Здесь вступает в силу резонанс последовательного колебательного контура. Как вы помните, на резонансной частоте сопротивление контура будет равняться его активному сопротивлению. Активное сопротивление контура составляют паразитные параметры катушки и конденсатора, поэтому падение напряжения на самом контуре будет равняться падению напряжения на паразитном сопротивлении, которое очень мало. Такой фильтр называют узкополосным режекторным фильтром.

На практике звенья таких фильтров каскадируют, чтобы получить различные фильтры с требуемой полосой пропускания. Но есть один минус у фильтров, в которых имеется катушка индуктивности. Катушки дорогие, громоздкие, имеют много паразитных параметров. Они чувствительны к фону, который магнитным путем наводится от расположенных поблизости силовых трансформаторов.

Конечно, этот недостаток можно устранить, поместив катушку индуктивности в экран из мю-металла, но от этого она станет только дороже. Проектировщики всячески пытаются избежать катушек индуктивности, если это возможно. Но, благодаря прогрессу, в настоящее время катушки не используются в активных фильтрах, построенных на ОУ.

Видео на тему “Как работает электрический фильтр”, рекомендую к просмотру:

Импедансная характеристика динамиков

Когда с примерными параметрами все более или менее ясно, самое время переходить к практике. Снимаем импедансную характеристику динамиков. С целью оценки сопротивления на графике имеется лесенка с шагом в один Ом. Скачек на 110 герцах это переключение с 10 Ом на 20.

Разумеется с такими горбами ни один фильтр нормально, и уж тем более расчетно работать не будет, особенно фильтр НЧ. Фильтру ВЧ этот подъем работать в общем то не мешает, однако как упоминалось ранее такой подъем на конце диапазона приведет к подъему высоких частот, в случае если усилитель имеет высокое сопротивление. Это можно использовать и во благо, оставив подъем небольшим.

Для примерного представления что от чего зависит привожу набор графиков для различных емкостей и сопротивлений. Ступенька начинается с 10 Ом.

Зная минимальное сопротивление НЧ звена, нужно привести к такому же и ВЧ звено. Тут много вариантов как соединить два резистора и цепочку Цобеля, и каждый кто решился на такой отважный шаг как сведение сам способен определить вид подключения и номиналы резисторов, поэтому описывать данную процедуру здесь излишне. Конкретно в данных колонках по результатам предварительного прослушивания решено было оставить родные резисторы на 2,2 ома и цепочку Цобеля параллельно ВЧ динамику.

RС-фильтры

RС-фильтр высоких частот

Схема RC-фильтра верхних (высоких) частот и его амплитудно-частотная характеристика показаны на рис. 1.

Рис. 1 — Схема и амплитудно-частотная характеристика высокочастотного CR-фильтра.

В этой схеме входное
напряжение прикладывается и к резистору,
и к конденсатору. Выходное же напряжение
снимается с сопротивления. При уменьшении
частоты сигнала возрастает реактивное
сопротивление конденсатора, а
следовательно, и полное сопротивление
цепи. Поскольку входное напряжение
остается постоянным, то ток, протекающий
через цепь уменьшается. Таким образом,
снижается и ток через активное
сопротивление, что приводит к уменьшению
падения напряжения на нем.

Фильтр характеризуется
затуханием, выраженным в децибелах,
которое он обеспечивает на заданной
частоте. RC-фильтры
рассчитываются таким образом, чтобы на выбранной частоте среза коэффициент передачи снижался приблизительно на 3
дБ (т.е. составлял 0,707 входного значения сигнала). Частота среза фильтра по уровню — 3 дБ определяется по формуле:

RС-фильтр низких частот

Фильтр низких частот имеет аналогичную структуру,
только емкость и сопротивление там
меняются местами. Амплитудно-частотную
характеристику такого фильтра можно
представить как зеркальное отображение
АЧХ предыдущего.

    

Рис. 2 — Схема и амплитудно-частотная характеристика низкочастотного RC-фильтра.

В этой цепи входное
напряжение также прикладывается и к
резистору, и к конденсатору, но выходное
напряжение снимается с конденсатора.
При увеличении частоты сигнала реактивное
сопротивление конденсатора, а
следовательно, и полное сопротивление
уменьшаются. Однако, поскольку это
полное сопротивление состоит из
реактивного и фиксированного активного
сопротивлений, его значение уменьшается
не так быстро, как реактивное сопротивление.
Следовательно, при увеличении частоты
снижение реактивного сопротивления (относительно полного сопротивления) приводит к уменьшению выходного напряжения. Частота среза этого фильтра по уровню -3 дБ также определяется по формуле предыдущего фильтра.

Рассмотренные
выше фильтры представляют собой RC-цепи,
которые характеризуются тремя параметрами,
а именно: активным, реактивным и полным
сопротивлениями. Обеспечиваемая этими
RC-фильтрами величина затухания зависит от отношения
активного или реактивного сопротивления
к полному сопротивлению.

При расчете любого RC-фильтра можно задать номинал либо резистора, либо конденсатора и вычислить значение другого элемента фильтра на заданной частоте среза. При практических расчетах
обычно задают номинал сопротивления,
поскольку он выбирается на основании
других требований. Например, сопротивление
фильтра является его выходным или
входным полным сопротивлением.

Полосовой RC-фильтр

Соединяя фильтры
верхних и нижних частот, можно создать
полосовой RC-фильтр,
схема и амплитудно-частотная характеристика
которого приведены на рис. 3.

Рис. 3 — Схема и АЧХ полосового RC-фильтра.

На схеме рис. 2. R1 — полное входное сопротивление; R2
полное выходное сопротивление, а частоты
низкочастотного и высокочастотного
срезов определяются по формулам:

Следует отметить,
что значение верхней частоты среза
()
должно быть по крайней мере быть в 10 раз
больше нижней частоты среза (),
поскольку только в этом случае
полосно-пропускающий фильтр будет
работать достаточно эффективно.

Многозвенные RC-фильтры

Одиночный RC-фильтр
не может обеспечить достаточного
подавления сигналов вне заданного
диапазона частот, поэтому для формирования
более крутой переходной области довольно
часто используют многозвенные фильтры
(рис. 4, 5). Частота среза многозвенного
фильтра определяется по формуле ВЧ, НЧ
RC-фильтра.
Добавление каждого звена приводит к
увеличению затухания на заданной частоте
среза примерно на 6 дБ.

Рис. 4 — Многозвенный высокочастотный фильтр

Рис. 5 — Многозвенный низкочастотный фильтр

Частота среза

Диапазон частот, для которого фильтр не вызывает значительного ослабления, называется полосой пропускания, а диапазон частот, для которых фильтр вызывает существенное ослабление, называется полосой задерживания. Аналоговые фильтры, такие как RC фильтр нижних частот, переходят из полосы пропускания в полосу задерживания всегда постепенно. Это означает, что невозможно идентифицировать одну частоту, на которой фильтр прекращает пропускать сигналы и начинает их блокировать. Однако инженерам нужен способ, чтобы удобно и кратко охарактеризовать амплитудно-частотную характеристику фильтра, и именно здесь в игру вступает понятие частоты среза.

Когда вы посмотрите на график амплитудно-частотной характеристики RC фильтра, вы заметите, что термин «частота среза» не очень точен. Изображение спектра сигнала, «разрезанного» на две половины, одна из которых сохраняется, а другая отбрасывается, неприменимо, поскольку затухание увеличивается постепенно по мере того, как частоты перемещаются от значений ниже частоты среза к значениям выше частоты среза.

Частота среза RC фильтра нижних частот фактически является частотой, на которой амплитуда входного сигнала уменьшается на 3 дБ (это значение было выбрано, поскольку уменьшение амплитуды на 3 дБ соответствует снижению мощности на 50%). Таким образом, частоту среза также называют частотой -3 дБ, и на самом деле это название является более точным и более информативным. Термин полоса пропускания относится к ширине полосы пропускания фильтра, и в случае фильтра нижних частот полоса пропускания равна частоте -3 дБ (как показано на диаграмме ниже).


Рисунок 8 – Данная диаграмма показывает общие особенности амплитудно-частотной характеристики RC фильтра нижних частот. Ширина полосы пропускания равна частоте -3 дБ.

Как объяснялось выше, пропускающее низкие частоты поведение RC фильтра обусловлено взаимодействием между частотно-независимым импедансом резистора и частотно-зависимым импедансом конденсатора. Чтобы определить подробности амплитудно-частотной характеристики фильтра, нам нужно математически проанализировать взаимосвязь между сопротивлением (R) и емкостью (C); мы также можем манипулировать этими значениями, чтобы разработать фильтр, который соответствует точным спецификациям. Частота среза (fср) RC фильтра нижних частот рассчитывается следующим образом:

\

Давайте посмотрим на простой пример. Значения конденсаторов являются более сдерживающими, чем значения резисторов, поэтому мы начнем с распространенного значения емкости (например, 10 нФ), а затем воспользуемся формулой для определения необходимого значения сопротивления. Цель состоит в том, чтобы разработать фильтр, который будет сохранять аудиосигнал 5 кГц и подавлять шум 500 кГц. Мы попробуем частоту среза 100 кГц, а позже в этой статье мы более тщательно проанализируем влияние этого фильтра на обе частотные составляющие.

\

Таким образом, резистор 160 Ом в сочетании с конденсатором 10 нФ даст нам фильтр, который дает амплитудно-частотную характеристику, близкую к необходимой.

Звучание системы

И конечно же надо сказать про звук. Стало лучше, сцена получилась очень недурственная. Кривизна АЧХ особо не слышна, даже наоборот, подъем на середине поддает детальности, верхов как ни странно хватает. Был замечен интересный эффект на басу. Как можно заметить по АЧХ на сотне герц большой подъем, а за ним завал, разумеется качающего баса нет, но есть мид бас. К примеру партия гитары кажется немного просаженным, а нижний бас, партия бас гитары, переходит как бы в слышимую область и читается очень четко, создается впечатление наличия того самого низкого баса.

Конечно ящики маловаты, и порой слышно подбубнивание, для устранения этого эффекта в каждую колонку было добавлено по 30 грамм натуральней шерсти. В целом данная акустика играет тепло и мягко даже без лампового усилителя, сохраняя в звуке строгость и точность камня, а вот с теплой лампой получается перебор мягкости. Все же им нужен усилитель по-строже – триод или двухтакт, но это тема для следующих экспериментов. Специально для сайта Радиосхемы – SecreTUseR.

   Обсудить статью ФИЛЬТР ДЛЯ АКУСТИКИ

Сведение фильтров

Теперь начинается финальный этап — сведение фильтров. Пора намотать катушки… или не намотать? Мотать всегда лень, нет провода, каркасов, конкретных значений индуктивности. В виду этих причин поискав в хламе нашлись пары катушек на 0,8 мкг и 3 мкг — на них и пришлось строить. В крайнем случаи всегда же можно домотать или отмотать лишнее.

По графику видно, что раздел попал в район 1,8 кгц, что вполне вписывается в задуманные границы. Подбором конденсаторов удалось добиться следующего импеданса. На частоте раздела имеется два бугорка, но их высота меньше полу ома — это не критично. Это не конечный его вид, в последствии был несколько увеличен резистор в цепочке Цобеля пищалки.

На приведенных выше картинках АЧХ как самого фильтра, так и АЧХ динамиков с его включением.

Что такое гиратор?

В русскоязычной литературе тема фильтров на гираторах встречается крайне редко. Информации кране мало. Обычно говорится что-то вроде: » гиратор способен превращать конденсатор в индуктивность» и приводится общая схема гиратора.

Вот то немногое, что становится известно о фильтре на гираторах из книги П. Хоровиц и У. Хилла “Искусство схемотехники”:

Гиратор действительно умеет превращать конденсатор в катушку. Наиболее часто он используется разработчиками микросхем когда необходима индуктивность. При этом гиратор располагают непосредственно на кристалле микросхемы.

Для радиолюбителей хорошей новостью станет то, что гиратор стабильно работает и при не самых точных используемых компонентах. Хотя конечно же лучше использовать прецизионные детали.

В англоязычной литературе фильтры на гираторах широко обсуждаются и применяются. Одним из наиболее интересных вариантов применения является фильтры на гираторах для ЦАП и АЦП.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector